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Abstract Fuzzy logic-based algorithms for the quantita-
tive treatment of complementarity of molecular surfaces
are presented. The identification of complementary sur-
face patches can be considered as a first step for the so-
lution of molecular docking problems. Based on these
initial guesses, docking structures can be further opti-
mized by standard technologies. In this work a simple
downhill simplex method for the optimization is used.
The algorithms are applied to various biomolecular com-
plexes. For all these complexes, at least one structure
was found to be in very good agreement with the experi-
mental data.
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Introduction

Molecular similarity and molecular complementarity
play an important role in many branches of molecular
science such as computer-aided drug design, biological
activity, guest–host interaction in supramolecular chem-
istry, and nanotechnology. Like many other successfully
used concepts in chemistry (hydrophobicity, acidity, etc.)
the terms “similarity” and “complementarity” cannot be
defined uniquely. This paper deals with molecular com-
plementarity based on the concept of molecular surfaces.
Our aim is the manifestation of algorithms for the treat-
ment of molecular docking problems, which are solely
based on the surface concept, i.e. which do not need the
atomic resolution of the molecular scenario any longer.

Such a strategy becomes increasingly important if the
number of atoms in the system is very large as in large
biomolecular complexes or for nanotechnology prob-
lems. We apply our strategy to some biomolecular com-
plexes for which experimental data are available for
comparison.

In recent years, considerable effort has been devoted
to surmount the computational barrier, i.e. the design of
computational procedures for the prediction of stable
structures of enzyme–inhibitor complexes. Most of these
algorithms use starting configurations, where the inhibi-
tor is close to the active site of the protein. This is, how-
ever, only possible when the receptor site and/or the
structure of the inhibitor is known. Predictions of the
complex structures with no such information are very
time-consuming because of the large number of degrees
of freedom, which have to be taken into account. The
aim of the present work is to find out first guesses for
complex structures of two biomolecules without any in-
formation on the possible binding sites. These first
guesses will then be used in an optimization procedure
resulting in energetically favorable binding geometries.
Because of the large quantity of docking algorithms in-
troduced until now, only those methods based on a simi-
lar concept will be considered here.

Solutions to the molecular docking problem have
used approaches based upon the chemistry and geometry
of macromolecules to reduce the solution space of the
problem. Nussinov and coworkers [1, 2, 3] use a reduc-
tion of molecular surface representation by identifying
discrete points on the molecular surfaces of two proteins
having specific local shape features, e.g. knob, hole, or
saddle-type shapes. The conformational space search is
constrained to conformations defined by alignment of
shape-congruent points using efficient geometric hashing
techniques. [4, 5] For the prediction of flexible mole-
cules the method was extended by representing the mole-
cules by rigid parts, which are connected by rotary
joints. [6, 7] In the approach of Hendrix and Kuntz [8]
the solid angle, introduced by Connolly [9] and calculat-
ed on each point of a solvent accessible surface, [10, 11,
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12] is applied to define shape regions as clusters of ad-
joining points with similar shape features. Molecules are
then docked using the DOCK program [13, 14, 15, 16]
and implementing the solid angle values of the regions
as a shape-based filter.

In this short communication only a resumé of the al-
gorithms is presented and one example for the applica-
tion is given. The complete strategy and the full formal-
ism will be published elsewhere as a series of papers.
[17, 18, 19]

Some basic relations from fuzzy set theory

In contrast to the methods mentioned above, fuzzy set
theory introduced by Zadeh [20] is used in this work to
find out the initial guesses of docking structures. The
aim is to transfer strategies of human ability for pattern
recognition into mathematical algorithms, which can be
applied to the molecular recognition problem. Fuzzy set
theory may be regarded as a generalization of classical
set theory. A fuzzy set A is denoted by an ordered set of
pairs. The first element denotes the element x in the defi-
nition space X and the second µ is the degree of member-
ship. The latter is defined by a membership function
µA(x), with values lying within the range 0≤µA(x)≤1 be-
tween zero and complete membership.

(1)

One of the basic tools in fuzzy set theory is based on the
concept of linguistic variables (LVs), whose values are
not numbers but words of a natural or artificial language.
LVs are groups of fuzzy sets with partially overlapping
membership functions over a common (crisp) basic vari-
able x. In order to represent several classes (terms) with-
in an LV, the membership functions should cover all the
relevant space of the crisp basic variable x. Generally
speaking a linguistic variable L, classified by n fuzzy
sets Ai, can be defined as: [21, 22, 23]

(2)

Fuzzification of molecular properties

In this work, the triangulated Connolly surface is used
for the description of the molecular model. [11, 24] On
each point defining these surfaces, molecular properties
like the shape index and the curvedness [25, 26] accord-
ing to the global curvatures, [27] the electrostatic poten-
tial, the local lipophilicity, and the ability to build hydro-
gen bonds are calculated. LVs are defined for all these
properties. A similar approach to that of Heiden et al.
[28] was used. The LV topography according to the
shape index is shown as an example in Fig.1.

Segmentation of molecular surfaces

Using the LVs of the molecular properties, the similarity
of two surface points can be quantified by a similarity
measure SLV(A, xA, xB), which is defined as the comple-
ment of the dissimilarity function DLV(A, xA, xB) pro-
posed by Heiden et al. [28] Therein, two values of the
same basic variable, e.g. the shape index, are compared
by a weighted sum of the difference of corresponding
membership function values. For simplicity the weight-
ing factors for each class of the LV is set to 1.

(3)

with

(4)

and

A: LV of corresponding type

xA, xB: values of the basic variable of surface points A
and B, respectively

wi: weighting factors of class i, 0≤wi≤1
n: number of classes of LV A

The molecular surface is subdivided into surface patches
(domains), which can be classified according to the lin-
guistic variable, i.e. which can be termed as bag, cleft,
saddle, ridge, or knob. In a first step, such points are
identified which represent a local maximum of the mem-
bership of a certain class. In the second step, neighboring
points are added to the domain until the similarity (Eq.
3) becomes smaller than a given threshold value. The de-
tails of the procedure are described elsewhere in a full
paper. [17] Two typical domains of the methotrexate
molecule are shown in Fig.2.

Fig. 1 Linguistic variable topography describing the surface
shape. The basic variable shape index covers the range from –1
for concave through 0 for saddle type to 1 for convex regions. The
classes bag, cleft, saddle, ridge, and knob are defined by piecewise
linear membership functions
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Matching of surface domains

For the matching algorithm described here, the domains
are characterized by a central surface point, an average
surface normal and the average values of the molecular
properties. Domains segmented according to the shape
index, the electrostatic potential and the local lipophili-
city are used. Complementary domains are identified us-
ing the average molecular properties and the dissimilari-
ty function (Eq. 4) as fuzzy complementarity measure.
The central points of these complementary domains as
well as regions where hydrogen bonds can be built are
used as critical points in the geometric hashing algorithm
introduced by Schwartz and coworkers. [4, 5]

In the first step of the geometric hashing algorithm, a
subset of all central points describing complementary
domains of the first molecule that matches a subset of
corresponding central points of the second molecule is
searched. For these subsets the transformation that best
superimposes the complementary critical points is com-
puted using the least-squares-fit algorithm of Ferro and
Hermanns. [29] In the second step, the seed matches are
extended by searching for additional matching pairs of
complementary domains not included in the subsets so
far. This procedure is carried out for all possible subsets
and the resulting structures are ranked according to the
number of matching pairs. All structures with more than

ten matching pairs are defined as initial guesses for the
complex structure. The consideration of the flexibility of
molecules is partially included in the algorithm by the
fuzzy representation of the molecular surface properties
and the allowance of inexact matches of critical points.

The initial guesses are then clustered to reduce the
number of complex structures, which are considered fur-
ther on. Structures with similar transformations are com-
bined to an average structure. Finally the remaining
structures are optimized with the downhill simplex meth-
od [30] and the energy function of Gehlhaar et al. [31] as
scoring function. Within the downhill simplex algorithm
only the rotational and translational degrees of freedom
of the hole molecule are considered. The flexibility of
the molecules is not treated yet. To identify the most rea-
sonable binding sides, the resulting complex structures
are ranked according to the energy. Finally the root mean
squares deviations according to the crystallographic
structure are calculated.

Results and discussion

We have applied the procedures described above to 35
biochemical complexes taken from the protein data
bank. [32] In addition to 28 enzyme–inhibitor complex-
es, three protein dimers and four antigen–antibody com-
plexes were considered. For all these complexes, struc-
tures were generated, which could be optimized with
reasonable computational effort to the crystallographic
structures within 2.5 Å rms-deviation. We did not make
any comparison to standard docking procedures up to
now because we know that at the present stage our new
method cannot compete with these procedures in speed
and accuracy. The aim of this extended abstract is to in-

Fig. 2 Two typical surface domains generated with the linguistic
variable topography. On the left-hand side the hole molecular sur-
face is shown color coded according to the shape index. The red
color signifies convex, and the blue color concave regions. On the
upper right-hand side a very convex region is defined as a domain.
This domain is characterized as a knob. The domain on the lower
side is a saddle-type region
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troduce the use of fuzzy set theory in the molecular
docking problem and to show that the results obtained so
far are very promising. Thus, we hope that our ideas
(with further improvements) can contribute to the pro-
gress towards the automatic identification of complex
structures from the 3D data.

A detailed analysis of the results and the scaling prop-
erties of the method will be presented in Exner et al. [18]
In this extended abstract, we demonstrate with the results
of the complex of dehydrofolate reductase and the inhib-
itor methotrexate as an example that the proposed meth-
od is able to predict the binding sites and potential struc-
tures of biomolecular complexes. The predicted structure
is shown in Fig. 3 and differs only slightly from the crys-
tallographic one. The energy calculated for this structure
by the simple scoring function was ranked first and, thus,
the structure can be easily found out of the other pro-
posed structures. For a further improvement of the re-
sults, a more sophisticated optimization procedure
should be used and the flexibility of molecules should be
handled explicitly during the optimization procedure.

Fig. 3 Complex structure of dihydrofolate reductase with the in-
hibitor methotrexate as predicted by the fuzzy docking algorithm.
The surface of the active site of the enzyme as well as the back-
bone in ribbon representation are shown in yellow. The inhibitor is
shown as a balls-and-sticks model. The green model is the crystal-
lographic structure taken from the pdb entry 4dfr. The orientation
of the inhibitor predicted by the proposed algorithm, shown as a
red model, differs only slightly with an rms-deviation of 1.056 Å


